Finitely presented modules

AbstractAlgebra allows the construction of finitely presented modules (i.e. with finitely many generators and relations), starting from free modules.

The generic code provided by AbstractAlgebra will only work for modules over euclidean domains.

Free modules can be built over both commutative and noncommutative rings. Other types of module are restricted to fields and euclidean rings.

Abstract types

AbstractAlgebra provides two abstract types for finitely presented modules and their elements:

  • FPModule{T} is the abstract type for finitely presented module parent

types

  • FPModuleElem{T} is the abstract type for finitely presented module

element types

Note that the abstract types are parameterised. The type T should usually be the type of elements of the ring the module is over.

Module functions

All finitely presented modules over a Euclidean domain implement the following functions.

Basic functions

zero(M::FPModule)
iszero(m::FPModuleElem{T}) where T <: RingElement

Return true if the given module element is zero.

number_of_generators(M::FPModule{T}) where T <: RingElement

Return the number of generators of the module $M$ in its current representation.

gen(M::FPModule{T}, i::Int) where T <: RingElement

Return the $i$-th generator (indexed from $1$) of the module $M$.

gens(M::FPModule{T}) where T <: RingElement

Return a Julia array of the generators of the module $M$.

rels(M::FPModule{T}) where T <: RingElement

Return a Julia vector of all the relations between the generators of M. Each relation is given as an AbstractAlgebra row matrix.

Examples

julia> M = free_module(QQ, 2)
Vector space of dimension 2 over rationals

julia> n = number_of_generators(M)
2

julia> G = gens(M)
2-element Vector{AbstractAlgebra.Generic.FreeModuleElem{Rational{BigInt}}}:
 (1//1, 0//1)
 (0//1, 1//1)

julia> R = rels(M)
AbstractAlgebra.Generic.MatSpaceElem{Rational{BigInt}}[]

julia> g1 = gen(M, 1)
(1//1, 0//1)

julia> !iszero(g1)
true

julia> M = free_module(QQ, 2)
Vector space of dimension 2 over rationals

julia> z = zero(M)
(0//1, 0//1)

julia> iszero(z)
true

Element constructors

We can construct elements of a module $M$ by specifying linear combinations of the generators of $M$. This is done by passing a vector of ring elements.

(M::FPModule{T})(v::Vector{T}) where T <: RingElement

Construct the element of the module $M$ corresponding to $\sum_i g[i]v[i]$ where $g[i]$ are the generators of the module $M$. The resulting element will lie in the module $M$.

Coercions

Given a module $M$ and an element $n$ of a module $N$, it is possible to coerce $n$ into $M$ using the notation $M(n)$ in certain circumstances.

In particular the element $n$ will be automatically coerced along any canonical injection of a submodule map and along any canonical projection of a quotient map. There must be a path from $N$ to $M$ along such maps.

Examples

F = free_module(ZZ, 3)

S1, f = sub(F, [rand(F, -10:10)])

S, g = sub(F, [rand(F, -10:10)])
Q, h = quo(F, S)

m = rand(S1, -10:10)
n = Q(m)

Arithmetic operators

Elements of a module can be added, subtracted or multiplied by an element of the ring the module is defined over and compared for equality.

In the case of a noncommutative ring, both left and right scalar multiplication are defined.

Basic manipulation

zero(M::FPModule)

Examples

julia> M = free_module(QQ, 2)
Vector space of dimension 2 over rationals

julia> z = zero(M)
(0//1, 0//1)

Element indexing

Base.getindexMethod
getindex(a::Fac, b) -> Int

If $b$ is a factor of $a$, the corresponding exponent is returned. Otherwise an error is thrown.

source

Examples

julia> F = free_module(ZZ, 3)
Free module of rank 3 over integers

julia> m = F(BigInt[2, -5, 4])
(2, -5, 4)

julia> m[1]
2

Module comparison

Base.:==Method
==(M::FPModule{T}, N::FPModule{T}) where T <: RingElement

Return true if the modules are (constructed to be) the same module elementwise. This is not object equality and it is not isomorphism. In fact, each method of constructing modules (submodules, quotient modules, products, etc.) must extend this notion of equality to the modules they create.

source

Examples

julia> M = free_module(QQ, 2)
Vector space of dimension 2 over rationals

julia> M == M
true

Isomorphism

Note

Note that this function relies on the Smith normal form over the base ring of the modules being able to be made unique. This is true for Euclidean domains for which divrem has a fixed choice of quotient and remainder, but it will not in general be true for Euclidean rings that are not domains.

Examples

julia> M = free_module(ZZ, 3)
Free module of rank 3 over integers

julia> m1 = rand(M, -10:10)
(3, -1, 0)

julia> m2 = rand(M, -10:10)
(4, 4, -7)

julia> S, f = sub(M, [m1, m2])
(Submodule over integers with 2 generators and no relations, Hom: submodule over integers with 2 generators and no relations -> free module of rank 3 over integers)

julia> I, g = image(f)
(Submodule over integers with 2 generators and no relations, Hom: submodule over integers with 2 generators and no relations -> free module of rank 3 over integers)

julia> is_isomorphic(S, I)
true

Invariant Factor Decomposition

For modules over a euclidean domain one can take the invariant factor decomposition to determine the structure of the module. The invariant factors are unique up to multiplication by a unit, and even unique if a canonical_unit is available for the ring that canonicalises elements.

AbstractAlgebra.snfMethod
snf(m::FPModule{T}) where T <: RingElement

Return a pair M, f consisting of the invariant factor decomposition $M$ of the module m and a module homomorphism (isomorphisms) $f : M \to m$. The module M is itself a module which can be manipulated as any other module in the system.

source

Examples

julia> M = free_module(ZZ, 3)
Free module of rank 3 over integers

julia> m1 = rand(M, -10:10)
(3, -1, 0)

julia> m2 = rand(M, -10:10)
(4, 4, -7)

julia> S, f = sub(M, [m1, m2])
(Submodule over integers with 2 generators and no relations, Hom: submodule over integers with 2 generators and no relations -> free module of rank 3 over integers)

julia> Q, g = quo(M, S)
(Quotient module over integers with 2 generators and relations:
[16 -21], Hom: free module of rank 3 over integers -> quotient module over integers with 2 generators and relations:
[16 -21])

julia> I, f = snf(Q)
(Invariant factor decomposed module over integers with invariant factors BigInt[0], Hom: invariant factor decomposed module over integers with invariant factors BigInt[0] -> quotient module over integers with 2 generators and relations:
[16 -21])

julia> invs = invariant_factors(Q)
1-element Vector{BigInt}:
 0