Field Interface

Field Interface

AbstractAlgebra.jl generic code makes use of a standardised set of functions which it expects to be implemented for all fields. Here we document this interface. All libraries which want to make use of the generic capabilities of AbstractAlgebra.jl must supply all of the required functionality for their fields.


Most fields must supply two types:

For example, the generic fraction field type in AbstractAlgebra.jl provides two types in generic/GenericTypes.jl:

The parent type must belong to AbstractAlgebra.Field and the element type must belong to AbstractAlgebra.FieldElem. Of course, the types may belong to these abstract types transitively.

For parameterised fields, we advise that the types of both the parent objects and element objects to be parameterised by the types of the elements of the base ring.

There can be variations on this theme: e.g. in some areas of mathematics there is a notion of a coefficient domain, in which case it may make sense to parameterise all types by the type of elements of this coefficient domain. But note that this may have implications for the ad hoc operators one might like to explicitly implement.

Parent object caches

In many cases, it is desirable to have only one object in the system to represent each field. This means that if the same field is constructed twice, elements of the two fields will be compatible as far as arithmetic is concerned.

In order to facilitate this, global caches of fields are stored in AbstractAlgebra.jl, usually implemented using dictionaries. For example, the Generic.FracField parent objects are looked up in a dictionary FracDict to see if they have been previously defined.

Whether these global caches are provided or not, depends on both mathematical and algorithmic considerations. E.g. in the case of number fields, it isn't desirable to identify all number fields with the same defining polynomial, as they may be considered with distinct embeddings into one another. In other cases, identifying whether two fields are the same may be prohibitively expensive. Generally, it may only make sense algorithmically to identify two fields if they were constructed from identical data.

If a global cache is provided, it must be optionally possible to construct the parent objects without caching. This is done by passing a boolean value cached to the inner constructor of the parent object. See generic/GenericTypes.jl` for examples of how to construct and handle such caches.

Required functions for all fields

In the following, we list all the functions that are required to be provided for fields in AbstractAlgebra.jl or by external libraries wanting to use AbstractAlgebra.jl.

We give this interface for fictitious types MyParent for the type of the field parent object R and MyElem for the type of the elements of the field.

Note that generic functions in AbstractAlgebra.jl may not rely on the existence of functions that are not documented here. If they do, those functions will only be available for fields that implement that additional functionality, and should be documented as such.

In the first place, all fields are rings and therefore any field type must implement all of the Ring interface. The functionality below is in addition to this basic functionality.

Data type and parent object methods


Return the characteristic of the field.

Basic manipulation of rings and elements


Return true if the given element is invertible, i.e. nonzero in the field.