Matrix functionality

Basic matrix functionality

As well as the Ring and Matrix interfaces, the following functions are provided to manipulate matrices and to set and retrieve entries and other basic data associated with the matrices.

It is possible to create matrices directly, without first creating a corresponding matrix space.

matrix(R::Ring, arr::Matrix{T}) where T <: RingElement

Given an $m\times n$ Julia matrix of entries, construct the corresponding AbstractAlgebra.jl matrix over the given ring R, assuming all the entries can be coerced into R.

matrix(R::Ring, r::Int, c::Int, A::Vector{T}) where T <: RingElement

Construct the given $r\times c$ AbstractAlgebra.jl matrix over the ring R whose $(i, j)$ entry is given by A[c*(i - 1) + j], assuming that all the entries can be coerced into R.

zero_matrix(R::Ring, r::Int, c::Int)

Construct the $r\times c$ AbstractAlgebra.jl zero matrix over the ring R.

Examples

julia> M = matrix(ZZ, BigInt[3 1 2; 2 0 1])
[3   1   2]
[2   0   1]

julia> N = matrix(ZZ, 3, 2, BigInt[3, 1, 2, 2, 0, 1])
[3   1]
[2   2]
[0   1]

julia> P = zero_matrix(ZZ, 3, 2)
[0   0]
[0   0]
[0   0]
Base.lengthMethod
length(a::MatrixElem{T}) where T <: NCRingElement

Return the number of entries in the given matrix.

source
Base.isemptyMethod
isempty(a::MatrixElem{T}) where T <: NCRingElement

Return true if a does not contain any entry (i.e. length(a) == 0), and false otherwise.

source
AbstractAlgebra.identity_matrixMethod
identity_matrix(M::MatElem{T}) where T <: NCRingElement

Construct the identity matrix in the same matrix space as M, i.e. with ones down the diagonal and zeroes elsewhere. M must be square. This is an alias for one(M).

source
AbstractAlgebra.scalar_matrixMethod
scalar_matrix(R::NCRing, n::Int, a::NCRingElement)
scalar_matrix(n::Int, a::NCRingElement)

Return the $n \times n$ matrix over R with a along the main diagonal and zeroes elsewhere. If R is not specified, it defaults to parent(a).

source
AbstractAlgebra.diagonal_matrixMethod
diagonal_matrix(x::NCRingElement, m::Int, [n::Int])

Return the $m \times n$ matrix over $R$ with x along the main diagonal and zeroes elsewhere. If n is not specified, it defaults to m.

Examples

julia> diagonal_matrix(ZZ(2), 2, 3)
[2   0   0]
[0   2   0]

julia> diagonal_matrix(QQ(-1), 3)
[-1//1    0//1    0//1]
[ 0//1   -1//1    0//1]
[ 0//1    0//1   -1//1]
source
Base.zeroMethod
zero(x::MatElem{T}, R::NCRing, r::Int, c::Int) where T <: NCRingElement
zero(x::MatElem{T}, r::Int, c::Int) where T <: NCRingElement
zero(x::MatElem{T}, R::NCRing) where T <: NCRingElement
zero(x::MatElem{T}) where T <: NCRingElement

Create an zero matrix over the given ring and dimensions, with defaults based upon the given source matrix x.

source
Base.oneMethod
one(a::MatrixElem{T}) where T <: NCRingElement

Return the identity matrix in the same matrix space as $a$. If the space does not contain square matrices, an error is thrown.

source
Base.transposeMethod
transpose(x::MatrixElem{T}) where T <: NCRingElement

Return the transpose of the given matrix.

Examples

julia> R, t = polynomial_ring(QQ, :t)
(Univariate polynomial ring in t over rationals, t)

julia> S = matrix_space(R, 3, 3)
Matrix space of 3 rows and 3 columns
  over univariate polynomial ring in t over rationals

julia> A = S([t + 1 t R(1); t^2 t t; R(-2) t + 2 t^2 + t + 1])
[t + 1       t             1]
[  t^2       t             t]
[   -2   t + 2   t^2 + t + 1]

julia> B = transpose(A)
[t + 1   t^2            -2]
[    t     t         t + 2]
[    1     t   t^2 + t + 1]
source
LinearAlgebra.trMethod
tr(x::MatrixElem{T}) where T <: NCRingElement

Return the trace of the matrix $a$, i.e. the sum of the diagonal elements. We require the matrix to be square.

Examples

julia> R, t = polynomial_ring(QQ, :t)
(Univariate polynomial ring in t over rationals, t)

julia> S = matrix_space(R, 3, 3)
Matrix space of 3 rows and 3 columns
  over univariate polynomial ring in t over rationals

julia> A = S([t + 1 t R(1); t^2 t t; R(-2) t + 2 t^2 + t + 1])
[t + 1       t             1]
[  t^2       t             t]
[   -2   t + 2   t^2 + t + 1]

julia> b = tr(A)
t^2 + 3*t + 2
source
LinearAlgebra.detMethod
det(M::MatrixElem{T}) where {T <: RingElement}

Return the determinant of the matrix $M$. We assume $M$ is square.

Examples

julia> R, x = polynomial_ring(QQ, :x)
(Univariate polynomial ring in x over rationals, x)

julia> A = R[x 1; 1 x^2];

julia> d = det(A)
x^3 - 1
source
LinearAlgebra.rankMethod
rank(M::MatrixElem{T}) where {T <: RingElement}

Return the rank of the matrix $M$.

Examples

julia> A = QQ[1 2; 3 4];

julia> d = rank(A)
2
source
AbstractAlgebra.lower_triangular_matrixMethod
lower_triangular_matrix(L::AbstractVector{T}) where {T <: NCRingElement}

Return the $n$ by $n$ matrix whose entries on and below the main diagonal are the elements of L, and which has zeroes elsewhere. The value of $n$ is determined by the condition that L has length $n(n+1)/2$.

An exception is thrown if there is no integer $n$ with this property.

Examples

julia> lower_triangular_matrix([1, 2, 3])
[1   0]
[2   3]
source
AbstractAlgebra.upper_triangular_matrixMethod
upper_triangular_matrix(L::AbstractVector{T}) where {T <: NCRingElement}

Return the $n$ by $n$ matrix whose entries on and above the main diagonal are the elements of L, and which has zeroes elsewhere. The value of $n$ is determined by the condition that L has length $n(n+1)/2$.

An exception is thrown if there is no integer $n$ with this property.

Examples

julia> upper_triangular_matrix([1, 2, 3])
[1   2]
[0   3]
source
AbstractAlgebra.strictly_lower_triangular_matrixMethod
strictly_lower_triangular_matrix(L::AbstractVector{T}) where {T <: NCRingElement}

Return the $n$ by $n$ matrix whose entries below the main diagonal are the elements of L, and which has zeroes elsewhere. The value of $n$ is determined by the condition that L has length $(n-1)n/2$.

An exception is thrown if there is no integer $n$ with this property.

Examples

julia> strictly_lower_triangular_matrix([1, 2, 3])
[0   0   0]
[1   0   0]
[2   3   0]
source
AbstractAlgebra.strictly_upper_triangular_matrixMethod
strictly_upper_triangular_matrix(L::AbstractVector{T}) where {T <: NCRingElement}

Return the $n$ by $n$ matrix whose entries above the main diagonal are the elements of L, and which has zeroes elsewhere. The value of $n$ is determined by the condition that L has length $(n-1)n/2$.

An exception is thrown if there is no integer $n$ with this property.

Examples

julia> strictly_upper_triangular_matrix([1, 2, 3])
[0   1   2]
[0   0   3]
[0   0   0]
source
AbstractAlgebra.is_lower_triangularMethod
is_lower_triangular(A::MatrixElem)

Return true if $A$ is an lower triangular matrix, that is, all entries above the main diagonal are zero. Note that this definition also applies to non-square matrices.

Alias for LinearAlgebra.istril.

Examples

julia> is_lower_triangular(QQ[1 2 ; 0 4])
false

julia> is_lower_triangular(QQ[1 0 ; 3 4])
true

julia> is_lower_triangular(QQ[1 2 ;])
false

julia> is_lower_triangular(QQ[1 ; 2])
true
source
AbstractAlgebra.is_upper_triangularMethod
is_upper_triangular(A::MatrixElem)

Return true if $A$ is an upper triangular matrix, that is, all entries below the main diagonal are zero. Note that this definition also applies to non-square matrices.

Alias for LinearAlgebra.istriu.

Examples

julia> is_upper_triangular(QQ[1 2 ; 0 4])
true

julia> is_upper_triangular(QQ[1 0 ; 3 4])
false

julia> is_upper_triangular(QQ[1 2 ;])
true

julia> is_upper_triangular(QQ[1 ; 2])
false
source
AbstractAlgebra.is_diagonalMethod
is_diagonal(A::MatrixElem)

Return true if $A$ is a diagonal matrix, that is, all entries off the main diagonal are zero. Note that this definition also applies to non-square matrices.

Alias for LinearAlgebra.isdiag.

Examples

julia> is_diagonal(QQ[1 0 ; 0 4])
true

julia> is_diagonal(QQ[1 2 ; 3 4])
false

julia> is_diagonal(QQ[1 0 ;])
true
source
Base.mapMethod
map(f, a::MatrixElem{T}) where T <: NCRingElement

Transform matrix a by applying f on each element. This is equivalent to map_entries(f, a).

source
Base.map!Method
map!(f, dst::MatrixElem{T}, src::MatrixElem{U}) where {T <: NCRingElement, U <: NCRingElement}

Like map, but stores the result in dst rather than a new matrix. This is equivalent to map_entries!(f, dst, src).

source

Inverse

Base.invMethod
inv(M::MatrixElem{T}) where {T <: RingElement}

Given a non-singular $n\times n$ matrix over a ring, return an $n\times n$ matrix $X$ such that $MX = I_n$, where $I_n$ is the $n\times n$ identity matrix. If $M$ is not invertible over the base ring an exception is raised.

source
AbstractAlgebra.is_invertibleMethod
is_invertible(A::MatrixElem{T}) where {T <: RingElement}

Return true if a given square matrix is invertible, false otherwise. If the inverse should also be computed, use is_invertible_with_inverse.

source
AbstractAlgebra.is_invertible_with_inverseMethod
is_invertible_with_inverse(A::MatrixElem{T}; side::Symbol = :left) where {T <: RingElement}

Given an $n \times m$ matrix $A$ over a ring, return a tuple (flag, B). If side is :right and flag is true, $B$ is a right inverse of $A$ i.e. $A B$ is the $n \times n$ unit matrix. If side is :left and flag is true, $B$ is a left inverse of $A$ i.e. $B A$ is the $m \times m$ unit matrix. If flag is false, no right or left inverse exists.

To get the space of all inverses, note that if $B$ and $C$ are both right inverses, then $A (B - C) = 0$, and similar for left inverses. Hence from one inverse one can find all by making suitable use of kernel.

source
AbstractAlgebra.pseudo_invMethod
pseudo_inv(M::MatrixElem{T}) where {T <: RingElement}

Given a non-singular $n\times n$ matrix $M$ over a ring return a tuple $X, d$ consisting of an $n\times n$ matrix $X$ and a denominator $d$ such that $MX = dI_n$, where $I_n$ is the $n\times n$ identity matrix. The denominator will be the determinant of $M$ up to sign. If $M$ is singular an exception is raised.

source

Examples

julia> M = matrix(QQ, 3, 3, [1 2 3;4 5 6;0 0 1])
[1//1   2//1   3//1]
[4//1   5//1   6//1]
[0//1   0//1   1//1]

julia> X = inv(M)
[-5//3    2//3    1//1]
[ 4//3   -1//3   -2//1]
[ 0//1    0//1    1//1]

julia> is_invertible(M)
true

julia> is_invertible_with_inverse(M)
(true, [-5//3 2//3 1; 4//3 -1//3 -2; 0 0 1])

julia> pseudo_inv(M)
([5 -2 -3; -4 1 6; 0 0 -3], -3//1)

Submatrices

Submatrices are only available for matrix spaces, not for matrix algebras and generally only available for generic matrices built on Julia arrays.

Submatrices return a new matrix with the same entries as the submatrix with the given range of rows and columns. They are best illustrated with examples.

Examples

julia> M = matrix(ZZ, BigInt[1 2 3; 2 3 4; 3 4 5])
[1   2   3]
[2   3   4]
[3   4   5]

julia> N1 = M[1:2, :]
[1   2   3]
[2   3   4]

julia> N2 = M[:, :]
[1   2   3]
[2   3   4]
[3   4   5]

julia> N3 = M[2:3, 2:3]
[3   4]
[4   5]

As per Julia, AbstractAlgebra supports the construction of matrix views. These allow one to work with a submatrix of a given matrix. Modifying the submatrix also modifies the original matrix.

The syntax for views is as for Julia's own views.

Examples

julia> M = matrix(ZZ, 3, 3, BigInt[1, 2, 3, 2, 3, 4, 3, 4, 5])
[1   2   3]
[2   3   4]
[3   4   5]

julia> N1 = @view M[1:2, :]
[1   2   3]
[2   3   4]

julia> N2 = @view M[:, 1:2]
[1   2]
[2   3]
[3   4]

julia> R = N1*N2
[14   20]
[20   29]

Elementary row and column operations

AbstractAlgebra.add_columnMethod
add_column(a::MatrixElem{T}, s::RingElement, i::Int, j::Int, rows = 1:nrows(a)) where T <: RingElement

Create a copy of $a$ and add $s$ times the $i$-th row to the $j$-th row of $a$.

By default, the transformation is applied to all rows of $a$. This can be changed using the optional rows argument.

source
AbstractAlgebra.add_column!Method
add_column!(a::MatrixElem{T}, s::RingElement, i::Int, j::Int, rows = 1:nrows(a)) where T <: RingElement

Add $s$ times the $i$-th row to the $j$-th row of $a$.

By default, the transformation is applied to all rows of $a$. This can be changed using the optional rows argument.

source
AbstractAlgebra.add_rowMethod
add_row(a::MatrixElem{T}, s::RingElement, i::Int, j::Int, cols = 1:ncols(a)) where T <: RingElement

Create a copy of $a$ and add $s$ times the $i$-th row to the $j$-th row of $a$.

By default, the transformation is applied to all columns of $a$. This can be changed using the optional cols argument.

source
AbstractAlgebra.add_row!Method
add_row!(a::MatrixElem{T}, s::RingElement, i::Int, j::Int, cols = 1:ncols(a)) where T <: RingElement

Add $s$ times the $i$-th row to the $j$-th row of $a$.

By default, the transformation is applied to all columns of $a$. This can be changed using the optional cols argument.

source
AbstractAlgebra.multiply_columnMethod
multiply_column(a::MatrixElem{T}, s::RingElement, i::Int, rows = 1:nrows(a)) where T <: RingElement

Create a copy of $a$ and multiply the $i$th column of $a$ with $s$.

By default, the transformation is applied to all rows of $a$. This can be changed using the optional rows argument.

source
AbstractAlgebra.multiply_column!Method
multiply_column!(a::MatrixElem{T}, s::RingElement, i::Int, rows = 1:nrows(a)) where T <: RingElement

Multiply the $i$th column of $a$ with $s$.

By default, the transformation is applied to all rows of $a$. This can be changed using the optional rows argument.

source
AbstractAlgebra.multiply_rowMethod
multiply_row(a::MatrixElem{T}, s::RingElement, i::Int, cols = 1:ncols(a)) where T <: RingElement

Create a copy of $a$ and multiply the $i$th row of $a$ with $s$.

By default, the transformation is applied to all columns of $a$. This can be changed using the optional cols argument.

source
AbstractAlgebra.multiply_row!Method
multiply_row!(a::MatrixElem{T}, s::RingElement, i::Int, cols = 1:ncols(a)) where T <: RingElement

Multiply the $i$th row of $a$ with $s$.

By default, the transformation is applied to all columns of $a$. This can be changed using the optional cols argument.

source

Examples

julia> M = ZZ[1 2 3; 2 3 4; 4 5 5]
[1   2   3]
[2   3   4]
[4   5   5]

julia> add_column(M, 2, 3, 1)
[ 7   2   3]
[10   3   4]
[14   5   5]

julia> add_row(M, 1, 2, 3)
[1   2   3]
[2   3   4]
[6   8   9]

julia> multiply_column(M, 2, 3)
[1   2    6]
[2   3    8]
[4   5   10]

julia> multiply_row(M, 2, 3)
[1    2    3]
[2    3    4]
[8   10   10]

Swapping rows and columns

AbstractAlgebra.swap_rowsMethod
swap_rows(a::MatrixElem{T}, i::Int, j::Int) where T <: NCRingElement

Return a matrix $b$ with the entries of $a$, where the $i$th and $j$th row are swapped.

Examples

julia> M = identity_matrix(ZZ, 3)
[1   0   0]
[0   1   0]
[0   0   1]

julia> swap_rows(M, 1, 2)
[0   1   0]
[1   0   0]
[0   0   1]

julia> M  # was not modified
[1   0   0]
[0   1   0]
[0   0   1]
source
AbstractAlgebra.swap_rows!Method
swap_rows!(a::MatrixElem{T}, i::Int, j::Int) where T <: NCRingElement

Swap the $i$th and $j$th row of $a$ in place. The function returns the mutated matrix (since matrices are assumed to be mutable in AbstractAlgebra.jl).

Examples

julia> M = identity_matrix(ZZ, 3)
[1   0   0]
[0   1   0]
[0   0   1]

julia> swap_rows!(M, 1, 2)
[0   1   0]
[1   0   0]
[0   0   1]

julia> M  # was modified
[0   1   0]
[1   0   0]
[0   0   1]
source
AbstractAlgebra.swap_colsMethod
swap_cols(a::MatrixElem{T}, i::Int, j::Int) where T <: NCRingElement

Return a matrix $b$ with the entries of $a$, where the $i$th and $j$th row are swapped.

source
AbstractAlgebra.swap_cols!Method
swap_cols!(a::MatrixElem{T}, i::Int, j::Int) where T <: NCRingElement

Swap the $i$th and $j$th column of $a$ in place. The function returns the mutated matrix (since matrices are assumed to be mutable in AbstractAlgebra.jl).

source

Swap the rows of M in place. The function returns the mutated matrix (since matrices are assumed to be mutable in AbstractAlgebra.jl).

Concatenation

The following are only available for matrix spaces, not for matrix algebras.

hcat(M::T, N::T) where T <: MatElem

Return the horizontal concatenation of $M$ and $N$. It is assumed that the number of rows of $M$ and $N$ are the same.

vcat(M::T, N::T) where T <: MatElem

Return the vertical concatenation of $M$ and $N$. It is assumed that the number of columns of $M$ and $N$ are the same.

Examples

julia> M = matrix(ZZ, BigInt[1 2 3; 2 3 4; 3 4 5])
[1   2   3]
[2   3   4]
[3   4   5]

julia> N = matrix(ZZ, BigInt[1 0 1; 0 1 0; 1 0 1])
[1   0   1]
[0   1   0]
[1   0   1]

julia> P = hcat(M, N)
[1   2   3   1   0   1]
[2   3   4   0   1   0]
[3   4   5   1   0   1]

julia> Q = vcat(M, N)
[1   2   3]
[2   3   4]
[3   4   5]
[1   0   1]
[0   1   0]
[1   0   1]

Linear solving

See Linear Solving & Kernel

Block diagonal matrix constructors

It is also possible to create block diagonal matrices from a vector of existing matrices. It is also possible to construct them from Julia matrices if one supplies the base ring.

Note that if the input matrices are not square, the output matrix may not be square.

AbstractAlgebra.block_diagonal_matrixMethod
block_diagonal_matrix(V::Vector{<:MatElem{T}}) where T <: NCRingElement

Create the block diagonal matrix whose blocks are given by the matrices in V. There must be at least one matrix in V.

source
AbstractAlgebra.block_diagonal_matrixMethod
block_diagonal_matrix(R::NCRing, V::Vector{<:Matrix{T}}) where T <: NCRingElement

Create the block diagonal matrix over the ring R whose blocks are given by the matrices in V. Entries are coerced into R upon creation.

source

Examples

julia> block_diagonal_matrix(ZZ, [[1 2; 3 4], [4 5 6; 7 8 9]])
[1   2   0   0   0]
[3   4   0   0   0]
[0   0   4   5   6]
[0   0   7   8   9]

julia> M = matrix(ZZ, [1 2; 3 4])
[1   2]
[3   4]

julia> N = matrix(ZZ, [4 5 6; 7 8 9])
[4   5   6]
[7   8   9]

julia> block_diagonal_matrix([M, N])
[1   2   0   0   0]
[3   4   0   0   0]
[0   0   4   5   6]
[0   0   7   8   9]

Similar and zero

Both similar and zero construct new matrices, but the entries are either undefined with similar or zero-initialized with zero.

similar(x::MatElem, R::Ring=base_ring(x))
zero(x::MatElem, R::Ring=base_ring(x))

Construct the matrix with the same dimensions as the given matrix, and the same base ring unless explicitly specified.

similar(x::MatElem, R::Ring, r::Int, c::Int)
similar(x::MatElem, r::Int, c::Int)
zero(x::MatElem, R::Ring, r::Int, c::Int)
zero(x::MatElem, r::Int, c::Int)

Construct the $r\times c$ matrix with R as base ring (which defaults to the base ring of the the given matrix). If $x$ belongs to a matrix algebra and $r \neq c$, an exception is raised, and it's also possible to specify only one Int as the order (e.g. similar(x, n)).

Base.isassigned(M::MatElem, i, j)

Test whether the given matrix has a value associated with indices i and j.

Examples

julia> M = matrix(ZZ, BigInt[3 1 2; 2 0 1])
[3   1   2]
[2   0   1]

julia> isassigned(M, 1, 2)
true

julia> isassigned(M, 4, 4)
false

julia> A = similar(M)
[#undef   #undef   #undef]
[#undef   #undef   #undef]

julia> isassigned(A, 1, 2)
false

julia> B = zero(M)
[0   0   0]
[0   0   0]

julia> C = similar(M, 4, 5)
[#undef   #undef   #undef   #undef   #undef]
[#undef   #undef   #undef   #undef   #undef]
[#undef   #undef   #undef   #undef   #undef]
[#undef   #undef   #undef   #undef   #undef]

julia> base_ring(B)
Integers

julia> D = zero(M, QQ, 2, 2)
[0//1   0//1]
[0//1   0//1]

julia> base_ring(D)
Rationals

LU factorisation

LinearAlgebra.luMethod
lu(A::MatrixElem{T}, P = SymmetricGroup(nrows(A))) where {T <: FieldElement}

Return a tuple $r, p, L, U$ consisting of the rank of $A$, a permutation $p$ of $A$ belonging to $P$, a lower triangular matrix $L$ and an upper triangular matrix $U$ such that $p(A) = LU$, where $p(A)$ stands for the matrix whose rows are the given permutation $p$ of the rows of $A$.

source
AbstractAlgebra.ffluMethod
fflu(A::MatrixElem{T}, P = SymmetricGroup(nrows(A))) where {T <: RingElement}

Return a tuple $r, d, p, L, U$ consisting of the rank of $A$, a denominator $d$, a permutation $p$ of $A$ belonging to $P$, a lower triangular matrix $L$ and an upper triangular matrix $U$ such that $p(A) = LDU$, where $p(A)$ stands for the matrix whose rows are the given permutation $p$ of the rows of $A$ and such that $D$ is the diagonal matrix diag$(p_1, p_1p_2, \ldots, p_{n-2}p_{n-1}, p_{n-1}p_n)$ where the $p_i$ are the inverses of the diagonal entries of $L$. The denominator $d$ is set to $\pm \mathrm{det}(S)$ where $S$ is an appropriate submatrix of $A$ ($S = A$ if $A$ is square and nonsingular) and the sign is decided by the parity of the permutation.

source

Examples

julia> M = matrix(QQ, 3, 3, [1 2 3;4 5 6;0 0 1])
[1//1   2//1   3//1]
[4//1   5//1   6//1]
[0//1   0//1   1//1]

julia> r, P, L, U = lu(M)
(3, (), [1 0 0; 4 1 0; 0 0 1], [1 2 3; 0 -3 -6; 0 0 1])

julia> r, d, P, L, U = fflu(M)
(3, -3//1, (), [1 0 0; 4 -3 0; 0 0 -3], [1 2 3; 0 -3 -6; 0 0 -3])

Reduced row-echelon form

AbstractAlgebra.rref_rationalMethod
rref_rational(M::MatrixElem{T}) where {T <: RingElement}

Return a tuple $(r, A, d)$ consisting of the rank $r$ of $M$ and a denominator $d$ in the base ring of $M$ and a matrix $A$ such that $A/d$ is the reduced row echelon form of $M$. Note that the denominator is not usually minimal.

source
AbstractAlgebra.rrefMethod
rref(M::MatrixElem{T}) where {T <: FieldElement}

Return a tuple $(r, A)$ consisting of the rank $r$ of $M$ and a reduced row echelon form $A$ of $M$.

source
AbstractAlgebra.is_rrefMethod
is_rref(M::MatrixElem{T}) where {T <: RingElement}

Return true if $M$ is in reduced row echelon form, otherwise return false.

source
AbstractAlgebra.is_rrefMethod
is_rref(M::MatrixElem{T}) where {T <: RingElement}

Return true if $M$ is in reduced row echelon form, otherwise return false.

source
is_rref(M::MatrixElem{T}) where {T <: FieldElement}

Return true if $M$ is in reduced row echelon form, otherwise return false.

source

Examples

julia> M = matrix(QQ, 3, 3, [1 2 3;4 5 6;0 0 1])
[1//1   2//1   3//1]
[4//1   5//1   6//1]
[0//1   0//1   1//1]

julia> r1, A = rref(M)
(3, [1 0 0; 0 1 0; 0 0 1])

julia> N = matrix(ZZ, 3, 3, [1 2 3;4 5 6;0 0 1])
[1   2   3]
[4   5   6]
[0   0   1]

julia> r2, B = rref_rational(N)
(3, [-3 0 0; 0 -3 0; 0 0 -3], -3)

julia> is_rref(A)
true

julia> is_rref(B)
true

Other functionality

Symmetry testing

AbstractAlgebra.is_symmetricMethod
is_symmetric(M::MatrixElem)

Return true if the given matrix is symmetric with respect to its main diagonal, i.e., transpose(M) == M, otherwise return false.

Alias for LinearAlgebra.issymmetric.

Examples

julia> M = matrix(ZZ, [1 2 3; 2 4 5; 3 5 6])
[1   2   3]
[2   4   5]
[3   5   6]

julia> is_symmetric(M)
true

julia> N = matrix(ZZ, [1 2 3; 4 5 6; 7 8 9])
[1   2   3]
[4   5   6]
[7   8   9]

julia> is_symmetric(N)
false
source
AbstractAlgebra.is_skew_symmetricMethod
is_skew_symmetric(M::MatrixElem)

Return true if the given matrix is skew symmetric with respect to its main diagonal, i.e., transpose(M) == -M, otherwise return false.

Examples

julia> M = matrix(ZZ, [0 -1 -2; 1 0 -3; 2 3 0])
[0   -1   -2]
[1    0   -3]
[2    3    0]

julia> is_skew_symmetric(M)
true
source

Powering

AbstractAlgebra.powersMethod
powers(a::Union{NCRingElement, MatElem}, d::Int)

Return an array $M$ of "powers" of a where $M[i + 1] = a^i$ for $i = 0..d$.

Examples

julia> M = ZZ[1 2 3; 2 3 4; 4 5 5]
[1   2   3]
[2   3   4]
[4   5   5]

julia> A = powers(M, 4)
5-element Vector{AbstractAlgebra.Generic.MatSpaceElem{BigInt}}:
 [1 0 0; 0 1 0; 0 0 1]
 [1 2 3; 2 3 4; 4 5 5]
 [17 23 26; 24 33 38; 34 48 57]
 [167 233 273; 242 337 394; 358 497 579]
 [1725 2398 2798; 2492 3465 4044; 3668 5102 5957]
source

Gram matrix

AbstractAlgebra.gramMethod
gram(x::MatElem)

Return the Gram matrix of $x$, i.e. if $x$ is an $r\times c$ matrix return the $r\times r$ matrix whose entries $i, j$ are the dot products of the $i$-th and $j$-th rows, respectively.

Examples

julia> R, t = polynomial_ring(QQ, :t)
(Univariate polynomial ring in t over rationals, t)

julia> S = matrix_space(R, 3, 3)
Matrix space of 3 rows and 3 columns
  over univariate polynomial ring in t over rationals

julia> A = S([t + 1 t R(1); t^2 t t; R(-2) t + 2 t^2 + t + 1])
[t + 1       t             1]
[  t^2       t             t]
[   -2   t + 2   t^2 + t + 1]

julia> B = gram(A)
[2*t^2 + 2*t + 2   t^3 + 2*t^2 + t                   2*t^2 + t - 1]
[t^3 + 2*t^2 + t       t^4 + 2*t^2                       t^3 + 3*t]
[  2*t^2 + t - 1         t^3 + 3*t   t^4 + 2*t^3 + 4*t^2 + 6*t + 9]
source

Content

AbstractAlgebra.contentMethod
content(x::MatrixElem{T}) where T <: RingElement

Return the content of the matrix $a$, i.e. the greatest common divisor of all its entries, assuming it exists.

Examples

julia> R, t = polynomial_ring(QQ, :t)
(Univariate polynomial ring in t over rationals, t)

julia> S = matrix_space(R, 3, 3)
Matrix space of 3 rows and 3 columns
  over univariate polynomial ring in t over rationals

julia> A = S([t + 1 t R(1); t^2 t t; R(-2) t + 2 t^2 + t + 1])
[t + 1       t             1]
[  t^2       t             t]
[   -2   t + 2   t^2 + t + 1]

julia> b = content(A)
1
source

Permutation

Base.:*Method
*(P::Perm, x::MatrixElem{T}) where T <: NCRingElement

Apply the pemutation $P$ to the rows of the matrix $x$ and return the result.

Examples

julia> R, t = polynomial_ring(QQ, :t)
(Univariate polynomial ring in t over rationals, t)

julia> S = matrix_space(R, 3, 3)
Matrix space of 3 rows and 3 columns
  over univariate polynomial ring in t over rationals

julia> G = SymmetricGroup(3)
Full symmetric group over 3 elements

julia> A = S([t + 1 t R(1); t^2 t t; R(-2) t + 2 t^2 + t + 1])
[t + 1       t             1]
[  t^2       t             t]
[   -2   t + 2   t^2 + t + 1]

julia> P = G([1, 3, 2])
(2,3)

julia> B = P*A
[t + 1       t             1]
[   -2   t + 2   t^2 + t + 1]
[  t^2       t             t]
source

Nilpotency

AbstractAlgebra.is_nilpotentMethod
is_nilpotent(A::MatrixElem{T}) where {T <: RingElement}

Return if A is nilpotent, i.e. if there exists a natural number $k$ such that $A^k = 0$. If A is not square an exception is raised.

source

Minors

AbstractAlgebra.minorsMethod
minors(A::MatElem, k::Int)

Return an array consisting of the k-minors of A.

Examples

julia> A = ZZ[1 2 3; 4 5 6]
[1   2   3]
[4   5   6]

julia> minors(A, 2)
3-element Vector{BigInt}:
 -3
 -6
 -3
source

Exterior power

AbstractAlgebra.exterior_powerMethod
exterior_power(A::MatElem, k::Int) -> MatElem

Return the k-th exterior power of A.

Examples

julia> A = matrix(ZZ, 3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 9]);

julia> exterior_power(A, 2)
[-3    -6   -3]
[-6   -12   -6]
[-3    -6   -3]
source

Pfaffian

Examples

julia> R, x = polynomial_ring(QQ, ["x$i" for i in 1:6])
(Multivariate polynomial ring in 6 variables over rationals, AbstractAlgebra.Generic.MPoly{Rational{BigInt}}[x1, x2, x3, x4, x5, x6])

julia> M = R[0 x[1] x[2] x[3]; -x[1] 0 x[4] x[5]; -x[2] -x[4] 0 x[6]; -x[3] -x[5] -x[6] 0]
[  0    x1    x2   x3]
[-x1     0    x4   x5]
[-x2   -x4     0   x6]
[-x3   -x5   -x6    0]

julia> pfaffian(M)
x1*x6 - x2*x5 + x3*x4

julia> pfaffians(M, 2)
6-element Vector{AbstractAlgebra.Generic.MPoly{Rational{BigInt}}}:
 x1
 x2
 x4
 x3
 x5
 x6
 

Nullspace

LinearAlgebra.nullspaceMethod
nullspace(M::MatElem{T}) where {T <: RingElement}

Return a tuple $(\nu, N)$ consisting of the nullity $\nu$ of $M$ and a basis $N$ (consisting of column vectors) for the right nullspace of $M$, i.e. such that $MN$ is the zero matrix. If $M$ is an $m\times n$ matrix $N$ will be an $n\times \nu$ matrix. Note that the nullspace is taken to be the vector space kernel over the fraction field of the base ring if the latter is not a field. In AbstractAlgebra we use the name "kernel" for a function to compute an integral kernel.

Examples

julia> R, x = polynomial_ring(ZZ, :x)
(Univariate polynomial ring in x over integers, x)

julia> S = matrix_space(R, 4, 4)
Matrix space of 4 rows and 4 columns
  over univariate polynomial ring in x over integers

julia> M = S([-6*x^2+6*x+12 -12*x^2-21*x-15 -15*x^2+21*x+33 -21*x^2-9*x-9;
              -8*x^2+8*x+16 -16*x^2+38*x-20 90*x^2-82*x-44 60*x^2+54*x-34;
              -4*x^2+4*x+8 -8*x^2+13*x-10 35*x^2-31*x-14 22*x^2+21*x-15;
              -10*x^2+10*x+20 -20*x^2+70*x-25 150*x^2-140*x-85 105*x^2+90*x-50])
[  -6*x^2 + 6*x + 12   -12*x^2 - 21*x - 15    -15*x^2 + 21*x + 33     -21*x^2 - 9*x - 9]
[  -8*x^2 + 8*x + 16   -16*x^2 + 38*x - 20     90*x^2 - 82*x - 44    60*x^2 + 54*x - 34]
[   -4*x^2 + 4*x + 8    -8*x^2 + 13*x - 10     35*x^2 - 31*x - 14    22*x^2 + 21*x - 15]
[-10*x^2 + 10*x + 20   -20*x^2 + 70*x - 25   150*x^2 - 140*x - 85   105*x^2 + 90*x - 50]

julia> n, N = nullspace(M)
(2, [1320*x^4-330*x^2-1320*x-1320 1056*x^4+1254*x^3+1848*x^2-66*x-330; -660*x^4+1320*x^3+1188*x^2-1848*x-1056 -528*x^4+132*x^3+1584*x^2+660*x-264; 396*x^3-396*x^2-792*x 0; 0 396*x^3-396*x^2-792*x])
source
nullspace(M::MatElem{T}) where {T <: FieldElement}

Return a tuple $(\nu, N)$ consisting of the nullity $\nu$ of $M$ and a basis $N$ (consisting of column vectors) for the right nullspace of $M$, i.e. such that $MN$ is the zero matrix. If $M$ is an $m\times n$ matrix $N$ will be an $n\times \nu$ matrix.

source

Hessenberg form

LinearAlgebra.hessenbergMethod
hessenberg(A::MatrixElem{T}) where {T <: RingElement}

Return the Hessenberg form of $M$, i.e. an upper Hessenberg matrix which is similar to $M$. The upper Hessenberg form has nonzero entries above and on the diagonal and in the diagonal line immediately below the diagonal.

source

Examples

julia> R, = residue_ring(ZZ, 7);

julia> M = matrix(R, 4, 4, [1 2 4 3; 2 5 1 0;6 1 3 2; 1 1 3 5])
[1   2   4   3]
[2   5   1   0]
[6   1   3   2]
[1   1   3   5]

julia> A = hessenberg(M)
[1   5   5   3]
[2   1   1   0]
[0   1   3   2]
[0   0   2   2]

julia> is_hessenberg(A)
true

Characteristic polynomial

AbstractAlgebra.charpolyMethod
charpoly(Y::MatrixElem{T}) where {T <: RingElement}
charpoly(S::PolyRing{T}, Y::MatrixElem{T}) where {T <: RingElement}

Return the characteristic polynomial $p$ of the square matrix $Y$. If a polynomial ring $S$ over the same base ring as $Y$ is supplied, the resulting polynomial is an element of it.

Examples

julia> R, = residue_ring(ZZ, 7);

julia> S = matrix_space(R, 4, 4)
Matrix space of 4 rows and 4 columns
  over residue ring of integers modulo 7

julia> T, y = polynomial_ring(R, :y)
(Univariate polynomial ring in y over R, y)

julia> M = S([R(1) R(2) R(4) R(3); R(2) R(5) R(1) R(0);
              R(6) R(1) R(3) R(2); R(1) R(1) R(3) R(5)])
[1   2   4   3]
[2   5   1   0]
[6   1   3   2]
[1   1   3   5]

julia> A = charpoly(T, M)
y^4 + 2*y^2 + 6*y + 2

julia> A = charpoly(M)
x^4 + 2*x^2 + 6*x + 2
source

Minimal polynomial

AbstractAlgebra.minpolyMethod
minpoly(M::MatElem{T}) where {T <: RingElement}
minpoly(S::PolyRing{T}, M::MatElem{T}) where {T <: RingElement}

Return the minimal polynomial $p$ of the square matrix $M$. If a polynomial ring $S$ over the same base ring as $Y$ is supplied, the resulting polynomial is an element of it.

Examples

julia> R = GF(13)
Finite field F_13

julia> S, y = polynomial_ring(R, :y)
(Univariate polynomial ring in y over R, y)

julia> M = R[7 6 1;
             7 7 5;
             8 12 5]
[7    6   1]
[7    7   5]
[8   12   5]

julia> A = minpoly(S, M)
y^2 + 10*y

julia> A = minpoly(M)
x^2 + 10*x
source

Transforms

AbstractAlgebra.similarity!Method
similarity!(A::MatrixElem{T}, r::Int, d::T) where {T <: RingElement}

Applies a similarity transform to the $n\times n$ matrix $M$ in-place. Let $P$ be the $n\times n$ identity matrix that has had all zero entries of row $r$ replaced with $d$, then the transform applied is equivalent to $M = P^{-1}MP$. We require $M$ to be a square matrix. A similarity transform preserves the minimal and characteristic polynomials of a matrix.

Examples

julia> R, = residue_ring(ZZ, 7);

julia> S = matrix_space(R, 4, 4)
Matrix space of 4 rows and 4 columns
  over residue ring of integers modulo 7

julia> M = S([R(1) R(2) R(4) R(3); R(2) R(5) R(1) R(0);
              R(6) R(1) R(3) R(2); R(1) R(1) R(3) R(5)])
[1   2   4   3]
[2   5   1   0]
[6   1   3   2]
[1   1   3   5]

julia> similarity!(M, 1, R(3))
source

Hermite normal form

AbstractAlgebra.hnfMethod
hnf(A::MatrixElem{T}) where {T <: RingElement}

Return the upper right row Hermite normal form of $A$.

source
AbstractAlgebra.hnf_with_transformMethod
hnf_with_transform(A)

Return the tuple $H, U$ consisting of the upper right row Hermite normal form $H$ of $A$ together with invertible matrix $U$ such that $UA = H$.

source

Examples

julia> A = matrix(ZZ, [2 3 -1; 3 5 7; 11 1 12])
[ 2   3   -1]
[ 3   5    7]
[11   1   12]

julia> H = hnf(A)
[1   0   255]
[0   1    17]
[0   0   281]

julia> is_hnf(H)
true

julia> H, U = hnf_with_transform(A)
([1 0 255; 0 1 17; 0 0 281], [-47 28 1; -3 2 0; -52 31 1])

julia> U*A
[1   0   255]
[0   1    17]
[0   0   281]

Smith normal form

AbstractAlgebra.snf_with_transformMethod
snf_with_transform(A)

Return the tuple $S, T, U$ consisting of the Smith normal form $S$ of $A$ together with invertible matrices $T$ and $U$ such that $TAU = S$.

source

Examples

julia> A = matrix(ZZ, [2 3 -1; 3 5 7; 11 1 12])
[ 2   3   -1]
[ 3   5    7]
[11   1   12]

julia> S = snf(A)
[1   0     0]
[0   1     0]
[0   0   281]

julia> S, T, U = snf_with_transform(A)
([1 0 0; 0 1 0; 0 0 281], [1 0 0; 7 1 0; 229 31 1], [0 -3 26; 0 2 -17; -1 0 1])

julia> T*A*U
[1   0     0]
[0   1     0]
[0   0   281]

(Weak) Popov form

AbstractAlgebra.jl provides algorithms for computing the (weak) Popov of a matrix with entries in a univariate polynomial ring over a field.

AbstractAlgebra.is_weak_popovMethod
is_weak_popov(P::MatrixElem{T}, rank::Int) where T <: PolyRingElem

Return true if $P$ is a matrix in weak Popov form of the given rank.

source
AbstractAlgebra.weak_popov_with_transformMethod
weak_popov_with_transform(A::MatElem{T}) where {T <: PolyRingElem}

Compute a tuple $(P, U)$ where $P$ is the weak Popov form of $A$ and $U$ is a transformation matrix so that $P = UA$.

source
AbstractAlgebra.popov_with_transformMethod
popov_with_transform(A::MatElem{T}) where {T <: PolyRingElem}

Compute a tuple $(P, U)$ where $P$ is the Popov form of $A$ and $U$ is a transformation matrix so that $P = UA$.

source

Examples

julia> R, x = polynomial_ring(QQ, :x);

julia> A = matrix(R, map(R, Any[1 2 3 x; x 2*x 3*x x^2; x x^2+1 x^3+x^2 x^4+x^2+1]))
[1         2           3               x]
[x       2*x         3*x             x^2]
[x   x^2 + 1   x^3 + x^2   x^4 + x^2 + 1]

julia> P = weak_popov(A)
[   1                        2                    3   x]
[   0                        0                    0   0]
[-x^3   -2*x^3 + x^2 - 2*x + 1   -2*x^3 + x^2 - 3*x   1]

julia> P, U = weak_popov_with_transform(A)
([1 2 3 x; 0 0 0 0; -x^3 -2*x^3+x^2-2*x+1 -2*x^3+x^2-3*x 1], [1 0 0; -x 1 0; -x^3-x 0 1])

julia> U*A
[   1                        2                    3   x]
[   0                        0                    0   0]
[-x^3   -2*x^3 + x^2 - 2*x + 1   -2*x^3 + x^2 - 3*x   1]